Risk Margin for a Non-Life Insurance Run-Off

Mario V. Wüthrich
RiskLab, ETH Zurich

October 11, 2011
Slovensko aktuarsko društvo
Ljubljana, Slovenia

www.math.ethz.ch/∼wueth

©2011 (M.V. Wüthrich | RiskLab | ETH Zurich)
Non-life insurance claims prediction problem

- **Insurance claims generate claims liability cash flows:**
 1. reporting delay
 2. claims settlement process (generates claims liability cash flows)
 3. possible re-opening (generates more claims liability cash flows)

- **Actuarial task:** Predict and value the outstanding claims liability cash flows based on all available information!

 ➞ These predictions give the claims provisions.

©2011 (M.V. Wüthrich | RiskLab | ETH Zurich)
Claims development triangle in non-life insurance

<table>
<thead>
<tr>
<th>a.y. (i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>13'109</td>
<td>7'246</td>
<td>982</td>
<td>706</td>
<td>358</td>
<td>257</td>
<td>339</td>
<td>161</td>
<td>334</td>
<td>172</td>
<td>35</td>
<td>205</td>
<td>32</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>14'457</td>
<td>7'581</td>
<td>589</td>
<td>487</td>
<td>124</td>
<td>74</td>
<td>128</td>
<td>50</td>
<td>474</td>
<td>12</td>
<td>72</td>
<td>63</td>
<td>141</td>
<td>286</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>16'075</td>
<td>6'597</td>
<td>1'081</td>
<td>299</td>
<td>154</td>
<td>551</td>
<td>29</td>
<td>21</td>
<td>16</td>
<td>65</td>
<td>98</td>
<td>415</td>
<td>280</td>
<td>24</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>15'682</td>
<td>7'782</td>
<td>1'001</td>
<td>587</td>
<td>477</td>
<td>179</td>
<td>44</td>
<td>18</td>
<td>65</td>
<td>240</td>
<td>7</td>
<td>64</td>
<td>4</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>16'551</td>
<td>7'155</td>
<td>921</td>
<td>946</td>
<td>473</td>
<td>69</td>
<td>168</td>
<td>198</td>
<td>220</td>
<td>17</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>15'439</td>
<td>8'357</td>
<td>1'070</td>
<td>451</td>
<td>822</td>
<td>15</td>
<td>21</td>
<td>30</td>
<td>559</td>
<td>54</td>
<td>18</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>14'629</td>
<td>7'016</td>
<td>1'181</td>
<td>773</td>
<td>1'393</td>
<td>442</td>
<td>42</td>
<td>73</td>
<td>55</td>
<td>105</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>17'585</td>
<td>8'703</td>
<td>1'335</td>
<td>316</td>
<td>396</td>
<td>303</td>
<td>77</td>
<td>44</td>
<td>766</td>
<td>777</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>17'419</td>
<td>8'522</td>
<td>1'125</td>
<td>695</td>
<td>282</td>
<td>434</td>
<td>244</td>
<td>157</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>16'665</td>
<td>8'705</td>
<td>1'539</td>
<td>702</td>
<td>118</td>
<td>132</td>
<td>1'969</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>15'471</td>
<td>8'274</td>
<td>1'372</td>
<td>1'261</td>
<td>593</td>
<td>425</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>15'103</td>
<td>8'290</td>
<td>3'416</td>
<td>882</td>
<td>370</td>
<td>1'122</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>14'540</td>
<td>8'102</td>
<td>929</td>
<td>556</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>14'590</td>
<td>7'746</td>
<td>1'104</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>13'967</td>
<td>7'548</td>
<td>1'088</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>12'930</td>
<td>7'181</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>12'539</td>
<td></td>
</tr>
</tbody>
</table>

- \(X_{i,j} \) denote the payments for accident year \(i \) in development year \(j \), thus they are paid in accounting year \(k = i + j \).

- Observed payments \(D_I = \{ X_{i,j}; \ i + j \leq I \} \) at time \(I = 2010 \).
Claims prediction in non-life insurance

<table>
<thead>
<tr>
<th>a.y. i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>13’109</td>
<td>7’246</td>
<td>982</td>
<td>706</td>
<td>358</td>
<td>257</td>
<td>339</td>
<td>161</td>
<td>334</td>
<td>172</td>
<td>35</td>
<td>205</td>
<td>56</td>
<td>32</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>1995</td>
<td>14’457</td>
<td>7’581</td>
<td>589</td>
<td>487</td>
<td>124</td>
<td>74</td>
<td>128</td>
<td>50</td>
<td>474</td>
<td>12</td>
<td>72</td>
<td>63</td>
<td>141</td>
<td>286</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>16’075</td>
<td>6’597</td>
<td>1’081</td>
<td>299</td>
<td>154</td>
<td>551</td>
<td>29</td>
<td>21</td>
<td>16</td>
<td>65</td>
<td>98</td>
<td>415</td>
<td>280</td>
<td>24</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>15’682</td>
<td>7’782</td>
<td>1’001</td>
<td>587</td>
<td>477</td>
<td>179</td>
<td>44</td>
<td>18</td>
<td>65</td>
<td>240</td>
<td>7</td>
<td>64</td>
<td>4</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>16’551</td>
<td>7’155</td>
<td>921</td>
<td>946</td>
<td>473</td>
<td>69</td>
<td>168</td>
<td>198</td>
<td>220</td>
<td>17</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>15’439</td>
<td>8’357</td>
<td>1’070</td>
<td>451</td>
<td>822</td>
<td>15</td>
<td>21</td>
<td>30</td>
<td>559</td>
<td>54</td>
<td>18</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>14’629</td>
<td>7’016</td>
<td>1’181</td>
<td>773</td>
<td>1’393</td>
<td>442</td>
<td>42</td>
<td>73</td>
<td>55</td>
<td>105</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>17’585</td>
<td>8’703</td>
<td>1’335</td>
<td>316</td>
<td>396</td>
<td>303</td>
<td>77</td>
<td>44</td>
<td>766</td>
<td>777</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>17’419</td>
<td>8’522</td>
<td>1’125</td>
<td>695</td>
<td>282</td>
<td>434</td>
<td>244</td>
<td>157</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>16’665</td>
<td>8’705</td>
<td>1’539</td>
<td>702</td>
<td>118</td>
<td>132</td>
<td>1’969</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>15’471</td>
<td>8’274</td>
<td>1’372</td>
<td>1’261</td>
<td>593</td>
<td>425</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>15’103</td>
<td>8’290</td>
<td>3’416</td>
<td>882</td>
<td>370</td>
<td>1’122</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>14’540</td>
<td>8’102</td>
<td>929</td>
<td>556</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>14’590</td>
<td>7’746</td>
<td>1’104</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>13’967</td>
<td>7’548</td>
<td>1’088</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>12’930</td>
<td>7’181</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>12’539</td>
<td></td>
</tr>
</tbody>
</table>

- **Predict** and **value** the cash flows in the lower triangle

$$
\mathcal{D}_I^c = \{ X_{i,j}; \ i + j > I \}.
$$

©2011 (M.V. Wüthrich | RiskLab | ETH Zurich)
(Nominal) best-estimate reserves

- Model the payments $X_{i,j}$ within a stochastic framework.

- The nominal best-estimate reserves at time I for the outstanding loss liabilities $X_{i,j} \in D^c_I$ (lower triangle) are defined by

$$R_I = \sum_{i+j>I} \mathbb{E} [X_{i,j} | D_I].$$

This is the probability-weighted average of all future cash flows based on the latest information available (see Solvency II guidelines).

- Predictors $\mathbb{E} [X_{i,j} | D_I]$ have minimal prediction variance (optimal).

- For (stochastic) discounting we refer to W.-Merz [5].
Bayesian chain-ladder (CL) model

Define cumulative payments \(C_{i,j} = \sum_{l=0}^{j} X_{i,l} \).

Model assumptions.

- Conditionally, given \(F = (F_0, \ldots, F_{J-1}) \),
 - \((C_{i,j})_{j=0,\ldots,J} \) are independent (in \(i \)) Markov processes (in \(j \)),
 - \(C_{i,j+1} \) only depends on \(F_j \) and \(C_{i,j} \), and
 - for \(j = 0, \ldots, J-1 \)
 \[
 \mathbb{E} \left[C_{i,j+1} \mid F, C_{i,j} \right] = F_j \, C_{i,j}.
 \]

- \(F_0, \ldots, F_J \) are independent and positive.

- \(F \) and \(\{C_{i,0} ; \ i \leq I\} \) are independent.
Bayesian chain-ladder (CL) model

Define cumulative payments $C_{i,j} = \sum_{l=0}^{j} X_{i,l}$.

Model assumptions.

- Conditionally, given $F = (F_0, \ldots, F_{J-1})$,

 \triangleright $(C_{i,j})_{j=0,\ldots,J}$ are independent (in i) Markov processes (in j),
 \triangleright $C_{i,j+1}$ only depends on F_j and $C_{i,j}$, and
 \triangleright for $j = 0, \ldots, J-1$

 $\mathbb{E} [C_{i,j+1} | F, C_{i,j}] = F_j C_{i,j}$.

- F_0, \ldots, F_J are independent and positive.

- F and $\{C_{i,0}; i \leq I\}$ are independent.
Remarks on the Bayesian CL model

- Conditionally, given F, we have the CL model of Mack (1993).
- Difficulty in practice: F is not known and needs to be estimated.
- Bayesian solution: assume F is part of the stochastic model and model it with a prior distribution.

Bayesian CL model \Rightarrow Bayesian CL model.

- Modeling F stochastically expresses our uncertainty about its true value. This parameter uncertainty will then naturally appear in the prediction uncertainty analysis.
Best-estimate reserves in the Bayesian CL model

• Within the Bayesian CL model the best-estimate reserves are given by, see Bühlmann et al. [1],

\[
\mathcal{R}_I = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \widehat{f}_j^{(I)} - 1 \right),
\]

where

- \(\widehat{f}_j^{(I)} = \mathbb{E} [F_j | D_I] \) posterior CL factors given information \(D_I \),
- \(F_j \) unknown CL factors (modeled stochastically with priors).

• In many cases the best-estimate reserves \(\mathcal{R}_I \) can be calculated analytically.
Conjugate priors

For conjugate prior distributions for F_j we often obtain

$$\hat{f}_j^{(I)} = \alpha_j^{(I)} \frac{\sum_{i=0}^{I-j-1} C_{i,j+1}}{\sum_{i=0}^{I-j-1} C_{i,j}} + \left(1 - \alpha_j^{(I)}\right) \mathbb{E}[F_j],$$

or

$$\hat{f}_j^{(I)} = \alpha_j^{(I)} \sum_{i=0}^{I-j-1} \frac{C_{i,j+1}}{C_{i,j}} + \left(1 - \alpha_j^{(I)}\right) \mathbb{E}[F_j],$$

thus, the posterior CL factor $\hat{f}_j^{(I)}$ is a credibility weighted average between observations in D_I and the prior mean $\mathbb{E}[F_j]$, see Bühlmann et al. [1] and W.-Embrechts-Tsanakas [4].
Technical provisions

deterministic best-estimate reserves \iff stochastic claims payments

- Solvency II Directive 2009/138/EC:

 "liabilities shall be valued at the amount for which they could be transferred, or settled, between knowledgeable willing parties in an arm’s length transaction."

- The resulting amount is called technical provisions.

- The technical provisions are the sum of the best-estimate reserves and the market-value margin (MVM) (also called risk margin).

- The MVM is a reward for risk bearing of the (non-hedgeable) run-off risks in the outstanding loss liability cash flows.
Market-value margin (MVM)

• Technical provisions (market-consistent value) for the outstanding loss liabilities are given by

\[R_I^+ = R_I + \text{MVM}_I. \]

• How should we calculate \(\text{MVM}_I \)?

• It should reflect the uncertainties in the prediction of \(\sum_{i+j>I} X_{i,j} \) when using the predictor \(R_I \).

• A risk-averse financial agent asks for a reward (MVM) for bearing possible shortfalls in the run-off of the outstanding loss liabilities.
Different MVM approaches

• The full **cost-of-capital approach** is rather **complex**: uses multi-period risk measures and leads to nested simulations. Therefore, approximations are used:

 ★ **expected run-off scaling approach** (used in Solvency II) is **NOT** risk-based;
 ★ **split of total uncertainty approach** (see Salzmann-W. [2]).

• **Expected utility theory approach**

• **Probability distortion approach**, see W.-Embrechts-Tsanakas [4],
 ★ straightforward,
 ★ well-known in life insurance,
 ★ consistent with risk neutral pricing in financial mathematics.
Probability distortion approach

The technical provisions at time I for the outstanding loss liabilities $X_{i,j} \in D_I^c$ (lower triangle) are defined by

$$R^+_I = \sum_{i+j>I} \frac{1}{\varphi_I} \mathbb{E} \left[\varphi_{i+j} X_{i,j} \mid D_I \right] = \sum_{i+j>I} \mathbb{E}^* \left[X_{i,j} \mid D_I \right],$$

where $(\varphi_k)_{k \geq 0}$ is a probability distortion satisfying:

1. $(\varphi_k)_{k \geq 0}$ is a density process, i.e.
 - φ_k is strictly positive, \mathbb{P}-a.s.,
 - $(\varphi_k)_{k \geq 0}$ is $(\sigma\{D_k\})_{k \geq 0}$-adapted,
 - $(\varphi_k)_{k \geq 0}$ is a martingale, i.e. $\mathbb{E} \left[\varphi_{k+1} \mid D_k \right] = \varphi_k$, with $\varphi_0 \equiv 1$ (normalization).

2. The sequence $\frac{1}{\varphi_k} \mathbb{E} \left[\varphi_{i+j} X_{i,j} \mid D_k \right], k \geq 0$, is a super-martingale.
Probability distortion MVM

The technical provisions at time I for the outstanding loss liabilities $X_{i,j} \in D^c_I$ (lower triangle) are defined by

$$R^+_I = \sum_{i+j>I} \frac{1}{\varphi_I} \mathbb{E} \left[\varphi_{i+j} X_{i,j} | D_I \right] = \sum_{i+j>I} \mathbb{E}^* \left[X_{i,j} | D_I \right],$$

these assumptions on the probability distortion $(\varphi_k)_{k \geq 0}$ imply

$$R^+_I \geq R_I \quad \text{and} \quad \text{MVM}_I \stackrel{\text{def.}}{=} R^+_I - R_I \geq 0.$$

Thus, we obtain a positive MVM reward for risk bearing (that should reflect (i) prediction uncertainty and (ii) risk-aversion).
Explicit probability distortion choice for CL

- In W.-Embrechts-Tsanakas [4] we provide an explicit choice for the probability distortion \((\varphi_k)_{k \geq 0}\) in a Bayesian CL model.

- This choice provides technical provisions

\[
\mathcal{R}_I^+ = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I+)} - 1 \right),
\]

where

\[
\hat{f}_j^{(I+)} = \left(\hat{f}_j^{(I)} - 1 \right) h_j^{(I)}(\alpha_1, \alpha_2) + 1 \geq \hat{f}_j^{(I)},
\]

with

- distortion function \(h_j^{(I)}(\alpha_1, \alpha_2) \geq 1\) such that
- \(\alpha_1\) risk-aversion parameter for **process uncertainty**,
- \(\alpha_2\) risk-aversion parameter for **parameter uncertainty**.
Properties of the distortion function

The risk-aversion adjusted CL factor is given by

\[
\tilde{f}_j^{(I+)} = \left(\tilde{f}_j^{(I)} - 1 \right) h_j^{(I)}(\alpha_1, \alpha_2) + 1 \geq \tilde{f}_j^{(I)},
\]

and the distortion function \(h_j^{(I)}(\alpha_1, \alpha_2) \) satisfies

- increasing in the process uncertainty parameter \(\alpha_1 \),
- increasing in the parameter uncertainty parameter \(\alpha_2 \),
- decreasing in time \(I \) (more information becoming available reduces the uncertainty).
Interpretation non-life vs. life insurance

• CL factors $\hat{f}_j^{(I)}$ correspond to a second order life table,

• risk-aversion adjusted CL factors $\hat{f}_j^{(I+)} \geq \hat{f}_j^{(I)}$ to a first order life table (with safety margin).

• Technical provisions satisfy

$$\mathcal{R}^+_I = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I+)} - 1 \right)$$

$$\geq \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I)} - 1 \right) = \mathcal{R}_I.$$
Probability distortion and MVM calibration

- Market-value margin is given by

\[
\text{MVM}_I = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I+)} - \prod_{j=I-i}^{J-1} \hat{f}_j^{(I)} \right) \geq 0.
\]

- Note that the MVM can only be calculated as a difference!

- Calibration and comparison:
 - Choose \(\alpha_1 \) (for process uncertainty) and \(\alpha_2 \) (for parameter uncertainty) so that the MVM has a similar size as the one from Solvency II.
 - Study qualitatively the expected run-off/release of the MVM.

©2011 (M.V. Wüthrich | RiskLab | ETH Zurich)
Expected run-off in private liability insurance

MVM(1) = Solvency II approach
MVM(2) = split of total uncertainty approach, Salzmann-W. [2, 3]
MVM(3) = probability distortion approach, see [4]
Conclusions

- Probability distortions provide a straightforward and simple framework for the modeling of the MVM.

- Risk-aversion corresponds to a prudent choice of the CL factors.

- Most practical examples show that the Solvency II approach underestimates the run-off uncertainties, see also W. [3].

- However, the MVM is relatively small compared to other positions and risk management should concentrate on the important issues!
References

